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Abstract— The two-dimensional thermoelastic crack problem in bonded dissimilar media or in a
half-plane medium is considered. The proposed method for solving this problem consists of two
parts. In the first part. complex potential functions are derived which are enforced to satisfy the
continuity conditions across the interface, while the second part consists of the derivation of singular
integral equations by introducing the dislocation functions along the crack border which are solved
numerically. For both half-plane and two bonded half-plane problems associated with an insulated
crack. the thermal stress intensity factors are computed numerically by using the appropriate
interpolation formulae. The results compared with those of the homogeneous case given in the
literature show that the method proposed here is effective, simple and general.

1. INTRODUCTION

Boundary value problems involving cracks in plane elasticity and;jor thermoelasticity have
been widely solved by many rescarchers. One of the most widely used methods in solving
crack problems is based on the application of complex variables in conjunction with the
continuation technique which reduces the mixed boundary value problem to a Riemann—
Hilbert problem for a sectionally holomorphic function. The theory of complex variables
provides the most rigorous method for solving two-dimensional elasticity and/or ther-
moelasticity problems. However. the closed form solutions are only available for some
spectfic problems. It is known that where the crack problem is associated with at least one
separate boundary surface. it is impossible to achieve a closed form solution. For example,
for the problem containing cracks in a half-plane or two bonded half-plane media there is
no closed form solution available. An alternative method for solving such complicated
crack problems may be formulated in terms of a system of singular integral equations by
using the related Green's function (such as dislocation or concentrated force solution) in
conjunction with the technique of superposition. This method has clear advantages in
solving the problem by applying 4 numerical treatment. In the derivation of singular integral
equations, the selection of the auxiliary function determines whether the kernels have weak
or strong singularities. The kernel with Cauchy-type singularity has been widely used to
solve many crack problems which can be reduced to a system of algebraic equations.
The numerical results are obtained by applying appropriate orthogonal polynomials. The
literature on this subject was collected and summarized by Erdogan er al. (1973). On the
other hand, the singular integral equation with a logarithmic singular kernel is also applied
frequently to crack problems. Chen and Cheung (1990) solved some elastic half-plane
problems by using log-type singular integral equations based on elementary solutions and
the principle of superposition. In the present approach. similar to the derivations followed
by Chen and Hasebe (1992). the thermoelastic crack problems in bonded dissimilar media
and a half-plane medium are solved by taking some density distributions of the potential
functions along the crack, which already satisfy the required boundary conditions along
the given boundary surface. This is accomplished by establishing interdependent relations
of the related complex potential functions based on the analytical continuation theorem.
The proposed method takes advantage of automatically satisfying the boundary conditions
along the boundary surfaces (free surface or interface) and then leaves the determinations
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Fig. 1. A curved crack in two bonded dissimilar materials.

of unknown coeflicients of the potential functions along the crack surfaces which may
be solved numerically in a straightforward manner. The relationships of interdependent
functions derived in the present study can also be reduced directly to the corresponding half-
plane and homogeneous problems. Both two bonded half-plane and half-plane problems
associated with a single curved crack (or line crack) under a remote heat flux are given to
illustrate the use of the present approach. The results associated with the thermoelastic
homogeneous problem containing a single crack are also provided to compare the given
exact solutions for demonstrating the flexibility and the accuracy of the present study.

2. COMPLEX POTENTIAL FORMULATIONS

2.1, Analviical continuation

For two-dimensional steady state heat conduction problems. the temperature functions
associated with bi-material media can be obtained from two complex potentials 6,(z) and
#,(z) which satisfy the Laplace equation within the domains S, and S, (Fig. 1) respectively
(Ozisik, 1980). In order to formulate the boundary conditions. the resultant heat flux Q,
and temperature 7, for each medium are expressed in terms of the complex potential as
follows

n

0, = (g, dr—gq,dx) = —k Im[0,(2)] (1)

T. = Rel[0,(z)] (2)

where Re and Im denote the real and imaginary parts of the bracketed expression. respec-
tively. The quantities ¢,,, g,, in eqn (1) are the components of heat flux in the x- and -
directions. respectively, and k; stands for the heat conductivity with j = 1 for §, and j = 2
for S..

If there exists a curved crack (or line crack) L in one of the two dissimilar media, say
S,. it is convenient to express the complex potential 0,(z) as the combination of ¢,, and ¢,
which are referred to as the principal and complementary parts of the complex potential,
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respectively. Since the temperature and resultant heat flux arc continuous across the inter-
face L*. it implies

[0 () =0(n] = [0-()+0.(0)] .1elL* (3)
K00 -0,0]) = kJ0(—0.(n] . tel* (4)

where a bar will be used to indicate a conjugate complex quantity while superscripts + and
— are used for the boundary values of the physical quantities as L* is approached from §
and S..respectively. 1t is easy to verify that egns (3) and (4) are satisfied by the following
complex potentials

ky—k- - -
0(2) =0+ A +A “0,(2). eSS +L* (5
0.(zy = j/‘f'~ 0,2, -eS.+L* (6)
- (k. +k) T

Once the principal part of the complex potential. 0,,(2). is determined. the temperature
functiony associated with the bi-material problem can be obtained by means of eqns (5)
and (6).

For two-dimensional isotropic thermoclastic problems. resultant forces and dis-

placements can be expressed as follows (Bogdanoft. 1934)
Y AN = GAD) O YD) (7)
26, i) = K (/) — U (D) +2G,,g,(2)
g(7) = |0(dz (j=1.2) (8)
where G, 1s the shear modulus. and w, = (3--v,):(1+v,). ff, =2, for plane stress and

K, =34 o= (1+v)z for planc strain, v, is Poisson’s ratio, , being the thermal expan-
sion coefficients. Similar to the previous dpploach the complex potel’llldls pertaining to S,
and S arc denoted by @(2). 4 (2) and ¢-(2). w-(2). respectively and the first two can be
divided into two parts. i.c.

O ) = D) (D) (D) =0+ (2). 9)

Substituting eqn (9) into eyns (7) and (8) to enforce continuity of tractions and dis-
placements across the intertace L*, resulting in

VO T ) = [ D TG D+ (D)) = (g (D + 15D+ (0}~
(10)

and

UGG 0+ (D] = G0 4 (D] = G [ () + 4, (0]

200G fL g (0] = G () = Gl () + 92 (0] 426G, G faga ()~ (11)

By applying the continuation theorem. eqns (10) and (11) can be used to define the functions
d-(2) and zh ) (D) +4p, (2) interms of ¢, g1 (2). and g.(z) as follows
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G2(2) = (147001, (2) +7291,(2) +7392(2), zeS.+L* (12)
G YD) =010, () + 7290, () +792(0). Z€ S, +LF (13)
with
Lo_AtE 4{Qﬁl L __ 2GGh
A A kG Gy KaG

where x and f§ are the Dundurs constants defined by

Gl +x,)—G, (l+r\ ) p G-k, — 1) =G (k.—1)
¥ o= e - = - .
G-(1+r)+G (1+k,)

G-(1+Kk)+G (1 4K3)
Similarly, the functions ¢, .(z) and z¢4(z) +¥.(z) can be defined as

2G,G:f, k

R R a1 NEELE R0 AL

26,Gof1 ks —k,

2PN+ (2) = ()20, + 0]+ (?:;]Gﬁ k| +k3

1g,(2). zeS,+L*
(15)

where

After rearrangement, the results of the foregoing manipulations can be summarized as

. 2G,G.ff, ki—
¢'(:):¢lﬁ(:)+)'4[3¢/\, —H//],, ]—r—f——— /

7l zeS, +L* 16
G, +MG k. +kﬂle() €S+ (16)

2G,G-f, 2G, G, f

)= 471100 ¢ )+ G o) ——= = -(2), z L*
d/l( ) !//I/J( )+/ld>l/7( ) (j)l( ) (J]"‘G ( ) K2G|+ng~( ) €‘SI_|'_ (17)
gy 0GB 26GE
20 = (43061,()+ =2 7m0l = Te e 96 zeSitl (18)
/ . 2G,G, ﬁ _— k
.(z) = (I +}'4)[—'¢)1p(:)+¢1/1(:)]*:4)2( G JFM l }( +k 91,;( ). feS,+L* (19)

Equations (5) and (6). and eqns (16) (19) give the general solutions to the thermoelastic
bi-material problem provided that the complex potentials #,,. ¢, and ,, are appropriately
solved.

Ifoneletsk, = k., G, = G.. vy = k1. and ff, = f~in the above equations, the foregoing
results may reduce to

01(z) = 0:(2) = 0,,(2) (20)

and
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D (2) = D2(2) = ¢, (2). W (2) = a(2) = ¥ ,(2), (21

which are the solutions corresponding to the thermoelastic homogeneous problem. Fur-
thermore, 1f one lets k- = G, = 0. the foregoing results become

O0z) =0, +0,,(2) (22)

and
Di(2) =, (2) = [0, () +,,(2) (23)
(2) = () = 1, () +20),(2) + 207, () +,(2)] (24)

which are the solutions corresponding to the thermoelastic half-plane problem.

2.2, Integral representation
Consider a curved crack L to be situated in the upper half-plane, S,, of an isotropic
homogeneous medium (Fig. 1), the corresponding complex potentials can be expressed as

Ui,(2) = — wln ‘ ho(s)log(z—n ds (25)

2n |,

C R
Bip ()= | [by(s)+ib(o)] log (== 1) ds (26)

r n(l+ny) J,
—iG, [ iG, [b,(s)+iby(s)]7
h - — ) A TRV 2

Vi) “‘f‘l\;) [Py (5= ib-(9)]log (= = 1) ds 1+k1)J z—1 ds (27)

where b,(s) indicates the strength of the temperature distocation and b, (s), b,(s) indicate
the components of the displacement discontinuities across the dislocation line. Substituting
eqn (25) into eqns (5) and (6). the temperature potentials are found as

~

. thy =k
)i () = — hytsylog (z—1)ds - : z—
0,(2) ) ho(a) Tog ( I)d~+_l k. 1k )[ ‘ by(s)log(z t)ds} (28)

0.(2) ol |
Ay = — - i
o mlk, +k>)

i

hu(s) lo —nm] (29)

In the present study. the unknown function A, (s) will be obtained on the basis that the total
heat flux across the crack surface L must be balanced by the given resultant heat fluxes Q,
across L. 1.€.

O, =| (g dyr—g¢,, dv)= -k, Im[0,(DO]+¢,. tel (30)

ol

where ¢ is a constant. In addition. the single-valued condition of the temperature must be
satisfied, i.e.

n

’ bots)dy = 0. 31)
JL

Now. the substitution of eqn (28) into eqn (30) yields the singular integral equation
subject to the subsidiary condition. eqn (31). which may be solved numerically. Once the
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temperature functions are given, the complex potentials ¢,(z) and ,(z) can be obtained
by substituting eqns (26)—(29) into ¢qns (16) and (17) and performing the integration
9,/(2) = [8(=)d=. resulting in

o G N b e e - — 1) de
$:1(2) =i | () +iha ()] log (= — 1) ds
. iG b - b))
71(]'1'1\‘])[“,' -—1
i T (b (s)—iby(5)]t
| i) +ibas)]og (- Py ds+ | | P("_—_’{(i)_]_ds}
JI Jr ol
C2G,Gup, i ka—k, N L
4 )\‘]G:%‘G] 27T/(1+/(1 J; /711(.\)[( f) lUf:» [) ] (32)
o G iG, [b,(5) +iby(s)]7
wl(_)_ﬂ(|+f\'|)~., [y (s)—ib-(H] log(z—t)ds— (1+M)j -, d
G Nos s
+7 2+ x )J [6,(s)—ibs()]log (z— 1) ds
LG {[ Ao —ib-)] HMd
n( + K )1 -7 i (z—7)
P LR ) ~[" —th () B
Ji -—1 Ji _,)
7(,,' G, /il " [ . 1 e
K> (l]+(lu A “(R)[ O'g —1 ]
‘)A / I
Tk k)p o= log(z =D =2]d \} (33)

The unknown functions #,(s) and b.(s) appearing in eqns (32) and (33) will be obtained
on the basis that the force acting on the crack surface must be balanced by the given
resultant force applied on the crack surface, i.c.

— Y +iX, =G 0+ 2P ()W () + ¢y +icy, telL (34)

where ¢, and ¢, are real constants. Substituting eqns (32) and (33) into eqn (34) leads to
the singular integral equation together with the subsidiary condition

»

J (5 (5) + i ()] ds —
! Ji

[B”(s) }ds =0 (35)

where

B, (s) = | hy(S)d<.

W

which is the requirement for a single-valued displacement.
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Fig. 2. Division und nodal distribution for the curved crack.

3. NUMERICAL SOLUTIONS

The dislocation functions appearing in the singular integral equations (30) and (34)
observing the subsidiary conditions. egns (31) and (33) will be solved numerically using the
appropriate interpolation formulae. In order to perform the numerical calculation, the
curved crack (or line crack) is approximated by A line segments as indicated in Fig. 2. Since
the temperature dislocation distribution h,(s) and displacement distributions &,(s). b,(s)
contain square-root singularity at the vicinity of the crack tip. the interpolation formulae
in local coordinates s, and s, for each crack tip element arc defined as (Chen and Cheung,
1990)

/’5(/; R .
his )= /),_.,< [ =1 )=bh, (i=0.1.2) (36)
AVARY /
and
Z(Iﬂ\ ’ ]
/)J(A\\) - /)i”\ \/ 2(/\ 7”— AR a [ +/7"\ : (] - 0“ [“ 2) (37)

Meanwhile, the interpolation formulae for the intermediate segments in local coordinates
5{2 < j < N—1) are taken as (Chen and Cheung. 1990)

2d.— s, s ]
: +h, (i=0.1.2) (38)

bis) = b »
W=D gy 2,

where d(1 <j < N) are the half length for each line segment and b, (0 < j < N) are the
unknown coefficients to be determined. If the above formulae are used. the integral equation
(30) together with the subsidiary condition (31). can be carried out to yield N+ 2 algebraic
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Table 1. Companisons between the calculated and exact values of the thermal stress intensity factors for different
discretization (N)

N Ky (KD Ky (Koo K/ (Ki)oaer Kiia/(Ki)exact
10 0.0000 0.0000 0.9919 —0.9919
20 0.0000 0.0000 0.9982 —0.9982
30 0.0000 0.0000 0.9999 —0.9999

equations for N+ 2 unknown coetficients. Similarly, the integral equation (34) together
with the subsidiary condition (35). can be solved to yield 2N +4 algebraic equations for
2N +4 unknown constants. The thermal stress intensity factors at two crack tips are directly
related to the coefhicients b, . h., and b, ., b, ; by (Chen and Cheung, 1990)

T - . G .
K, —iKy, = (2n) (2d,)" - CXP(—lh)m(/’l.o‘Hbz.o) (39)
and
Ky —iKyy = 2r)° “(2dy)' ~exp (—in )—rvfG‘—(b +iby ) (40)
18 1B < =ty p B (145, 1N 2N

where the angles », and %, are defined in Fig. 1.

3.1, Homogeneous problem

For the purpose of examining the accuracy of the present approach, the calculated
stress intensity factors of two numerical examples associated with the thermoelastic homo-
geneous problem are provided to compare the given exact solutions. First, we consider an
insulated line crack of length 2/ in an infinite medium under a remote uniform heat flux, ¢,
in the direction perpendicular to that of a line crack. The exact thermal stress intensity
factors at crack tip A for this problem are

3 32/

(Ko = 0. (Ko = 211
Comparisons between the calculated and exact values of the thermal stress intensity factors
for different numbers of line segment with equally divided space are given in Table 1.

From the above numerical examination, we see that even for a coarse mesh, i.e. N = 10,
the proposed numerical method provides reliable results. Next, we consider an insulated
circular-arc crack with the half angle 0 = 30 and the radius r subject to uniform heat flow
¢ directed at an angle ; with respect to the central axis of an arc crack. The results from
Fig. 3 (tip A) and Fig. 4 (tip B) indicate that the calculated values of the stress intensity
factors yield good accuracy when compared to the exact results given by Chao and Shen
(1993) as the number of line segments N = 30).

3.2, Half-plane problem

As mentioned previously. the solutions associated with the half-plane problem can be
retrieved from the results given for the bi-material problem if k, = G, = 0. Referring to
Figs 5 and 6. two spectfic crack configurations associated with a half-plane medium (or
two bonded half-plane media) are considered to illustrate the use of the present approach.
Note that both the half-plane surface and the crack are assumed to be insulated and
traction-tree.

3.2.1. An insulated line crack. Some numerical calculations are carried out to clarify
the effects of the geometrical parameters on the thermal stress intensity factors as shown in
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Fig. 3. Comparisons between the calculated and exact values of the thermal stress intensity factors
at tip A of the circular-arc crack.

Figs 7 and 8. It is seen that the opening mode stress intensity factors K| increase mon-
otonically at both crack tips as the insulated line crack approaches the boundary surface
of a semi-infinite medium as indicated in Fig. 7. except in the cases of 2 =0 and 2 = —90
where the thermal stress intensity factors for the opening mode are zero. Figure 8 reveals
that the distance between a line crack and the boundary surface has a remarkable influence
upon the in-plane shear mode stress intensity factors K|, at tip-A, particularly for small
values of A/l. This is because the presence of an nsulated boundary surface may result in
the thermal energy cumulation around the crack tip closer to the boundary surface. Notice
that the thermal stress intensity factor for the in-plane shear mode is zero for 4 = 0" since
in this case the insulated crack does not disturb the stationary uniform heat flow.
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Fig. 4. Comparisons between the calculated and exact values of the thermal stress intensity factors
at tip B of the circular-arc crack.
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Fig. 3. An insulated line crack in two bonded dissimilar materials.

3.2.2. An insulated circular-are crack. Figures 9 and 10 display the dimensionless stress
intensity factors at tip-A for the opening mode and in-plane shear mode, respectively
against the half angle 0 of the insulated circular-arc crack. As expected. the magnitude of
local stresses increases with decreasing distance between the circular-arc crack and the
boundary surface. It is interesting to see that the open mode stress intensity factor attains
its maximum value around ¢ = 78 and then decreases as the crack angle further increases.
This is because the presence of an insulated crack surface may be able to shield the heat
flux as the crack angle extends beyond 78 and then results in decreasing the thermal energy
intensification around the crack tips.

3.3. Two bonded half-plane problem

Referring to Figs 5 and 6. the line crack and circular-arc crack configurations are
considered separately to be situated in the upper portions of dissimilar media. In what
follows, k,/k, and f, f, are fixed at | except specifically stated.

3.3.1. An insulared line crack. Figure 11 indicates that the positive thermal stress
intensity factors increase with a decrease in the distance between a line crack and the
interface as the crack is placed in a hard material (G-/G, = 0.5). On the other hand, the
negative thermal stress intensity factors enhance as a line crack placed in a soft material

S Y

o X
S:
e
ke
el PN N
ki1
e

Fig. 6. An insulated circular-are crack in two bonded dissimilar materials.
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(G, G, = 3.0) approaches the boundary surface as indicated in Fig. 12. This can be explai-
ned by the fact that the stiffer material tends to act as a barrier in load transfer. Note that
the open mode stress intensity factor for a crack either parallel or perpendicular to the
interface is zero. which is the same as the result given for the half-plane problem. When a
heat flow approaches the top medium S, from the lower medium S, in the direction
perpendicular to the interface, the thermal stress intensity factors for a crack perpendicular
or parallel to the interface are displayed in Figs 13 and 14. It is seen that both Kj and Kj,
for a crack perpendicular to the interface (~. = 90°) are found to vanish since the uniform
heat flow would not be disturbed by the presence of an insulated crack. On the other hand,
thermal stress intensity factors for a crack parallel to the interface (4 = 0°) do exist and the
ctfect of material rigidity G,/G, on the factors K, K, is enhanced, particularly for small
values of /1. The thermal stress intensity factors influenced by the ratio of thermal expansion
coefficients f§,,f3, are displayed in Figs 15 and 16. The results show that positive thermal
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stress intensity factors are exhibited as a crack is placed in a material with a higher thermal
expansion coefficient and vice versa. It should be noted that the numerical results of the
thermal stress intensity factors are very sensitive to the distance # since the convergence
becomes slower as the crack approaches the boundary surface.

3.3.2. Aninsulated circulur-arc crack. The effects of material properties and geometrical
parameters on the thermal stress intensity factors at tip A for a circular-arc crack problem
are exhibited in Figs 17 and 18. The results generally show that both K| and K|, increase
with decreasing distance /r for a crack near an interface where the material next to it is
less rigid, which also agrees with the bechavior of a crack near the boundary surface of the
half-plane problem. On the other hand, the situation reverses for a crack near an interface
where the material next to it is more rigid. As a heat flow approaches the top medium S,
from the lower medium S. in the direction perpendicular to the interface, the thermal



3550 C. K. Chao and M. H. Shen

0.150
C W?\=O°° G2/Gy=0.5)
L aeesa A=90° (G;/G;=0.6_or 3.0)
2 0100 |- G./G,=3.0)
= C
< C
:_t 0.050
X g
=) ,
@
S 0000 |- —a &
& -
> —00s0 |
e o -
< r
[aY] -
S -0100 -
N L
L
-0.150 -
-
~0.200 Cons b e by b b pne borgdnand
o 1 2 3 4 5 6 7 8 9 10 11

h/L
Fig. 13. The mode T stress intensity tactors versus the distance from the center of the line crack to
the boundary surface of two bonded materials as a heat flux approaches from S, to S,.
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Fig. 14. The mode 1 stress intensity factors versus the distance from the center of the line crack to
the boundary surface of two bonded materials as a heat flux approaches S, from S,.

intensity factors for different ratios of material rigidity and thermal expansion coefficient
are displayed in Figs 19-22. It 1s suggested that the influence of the material rigidity G,/G,
on the thermal stress intensity factors is quite similar to the influence of the thermal
expansion coeflicient . ;.

4. CONCLUSIONS

A general solution to the thermoelastic crack problem in dissimilar media is presented
via the application of the complex variables theory of and the use of dislocation distributions
for determining the unknown functions. Based on the analytical continuation theorem,
both the temperature and displacement complex potentials are formulated such that the
continuity conditions across the interface are satisfied. The resulting singular integral
equations with a logarithmic singular kernel are established from the equilibrium conditions



Solutions of thermoelastic crack problems 3551

Ge660 7\=0n‘7 B2/8:=0.5)
sasee A=90° (Bo/B:=0.5 or 3.0)
A=0" (B./F:=3.0)

Fig. 15. The mode [ stress intensity lactors versus the distance from the center of the line crack to

the boundary surface of two bonded materials as a heat flux approaches S, from S, (G./G, =

o bl g =
) o o %
53 <) ) <)

Ku/[zf’)tﬂ‘/zcxl WZQ/U +ieq) k)

)
S

-1.50

!
o
o
<3

1.0).

eeoeeo \=0° (B8,/8,=0.5

ceeeo A=0° (B8:/8,=0.5

seeen A=90° (B,/8,=0.5 or 3.0)

aeeaa \=0° B2/81=3.0

aease A=0° B:/B8,=3.0
\\&*‘ tip B
o o

tip A or tip B

A L A A A TR A S R A A S At B B A A |

o—8—6
tip A

e

0 1 2 3 4 5 6 7 8 9 10 11

h/1

Fig. 16. The mode 11 stress intensity factors versus the distance from the center of the line crack to
the boundary surface of two bonded materials as a heat flux approaches S, from S, (G./G, = 1.0).

of resultant force and heat flux across the crack surface. This leaves unknown functions
(dislocation functions) appearing in the singular integral equations which can then be
solved numerically. The thermal stress intensity factors which are directly related to the
coefficients of dislocation functions are computed numerically in a straightforward manner.
The results are compared to those of the homogeneous case found in the literature which
show that the method proposed here is effective. simple and general. Both half-plane and
two bonded half-plane problems associated with an insulated circular-arc crack (or line
crack) are considered to demonstrate the effects of the geometrical parameters on the
strength of the thermal stress singularity. It must be emphasized that the method proposed
in the present study can also be applied to solve more complicated problems with irregularly
shaped multiple cracks embedded in thermoelastic dissimilar media.

SAS 32-24-B
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Fig. 17. The mode 1 stress intensity factors versus the half angle 0 of the circular-arc crack in two
bonded materials.
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Fig. 18. The mode 11 stress intensity factors versus the half angle ) of the circular-arc crack in two
bonded materials.
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Fig. 22. The mode II stress intensity factors versus the half angle # of the circular-arc crack in two
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